China Good quality Sale price WPO worm gearbox wpo speed reducer wpo60 for 7.5kw motor near me shop

WP SERIES WORM GEAR SPEED REDUCERWP series reducer, worm is made of 45 # high quality steel by heat treatment, and worm wheel is cast with tin bronze. It has good wear resistance, especially in bearing capacity. It is mainly suitable for deceleration transmission of various mechanical equipment such as plastics, metallurgy, beverage, mine, lifting and transportation, chemical construction and so on.
WP SERIES WORM GEAR SPEED REDUCERwp series structure drawing
WP SERIES WORM GEAR SPEED REDUCER MOUNTING DIMENSIONS OUTPUT SHAFT DIMENSIONS AND OVERVIEW DIMENSIONSWPO WPX SERIES MOUNTING POSITION

Speed  Ratio
1/10
1/15
1/20
1/25
1/30
1/40
1/50
1/60

Efficiency
77~90%
76~88%
75~84%
72~82%
68~82%
64~75%
62~72%
60~71%

HIGH QUALITY OUTPUT SHAFTNew standard axle, multi-precision machining, through rigorous dynamic and static balance test, to ensure low noise and smooth operation of reducer.
PRECISION BEVEL GEAR20CrMn Ti material – low carbon alloy steelImported gear grinding machine processing, high hardness, stable performance.Vacuum CZPT carburizing heat treatment, carburizing layer uniform.
HIGH QUALITY SHELL MATERIALThe box body is made of HT200 material,which is cleaned by professional screening and washing equipment to ensure that the inner cavity of the box body is cleaner without iron filings.
WP SERIES WORM GEAR SPEED REDUCER FEATURES:●Drive smoothly, vibration, impact and noise are small, High quality Nema23 stepper motor 425oz 3Nm 112MM length 23HS11230 for cnc deceleration ratio is large, versatility is wide, and can be used with a variety of mechanical equipment.
●Large transmission ratio can be obtained by single-stage transmission, and the structure is compact. Most types of reducers have better self-locking performance. Braking devices can be saved for mechanical equipment with braking requirements.
●The meshing friction loss between worm tooth and worm gear tooth surface is larger, so the transmission efficiency is lower than that of gear, easy to heat and high temperature.●Higher requirements for lubrication and cooling.●Good compatibility, worm gear and worm are manufactured according to national standards, bearing, oil seal and other standard parts are used.
Our Company ZheJiang CZPT GEAR TECHNOLOGY CO., LTDOur company is located in the city of HangZhou, ZheJiang Province of China. We handle the products of power transmission, our lines mainly cover series products in speed reducers, gearboxes , associated electricial motors and other power transmission accessories. Based on the versatile functions, our products can be utilized in many fields: machines of waste water treatment, dredgers, Wear-resistant bearing steel bushing bushing inside dimension 7mm steel bushing can be custom-made chemical industry, cranes, metal working mills, conveyors, paper industry, cement industry, cableways and so on.With the excellent quality and reasonable price , our products enjoy a good reputation from customers and the peers all over the world. Furthermore, the R&D investment are annually increasing for the purpose of better meeting the new demands of our customers and adapting the new tendency of the industry.Depending on the principles of honestly operating and mutual benefit, We sincerely look forward to cooperating with you.
Application area WP series worm gear speed reducer
 It is mainly suitable for deceleration transmission of various mechanical equipment such as plastics, metallurgy, beverage, mine, lifting and transportation, chemical construction and so on.
Packing&Transportion PACKING AND TRANSPORTION●Packaging: In order to ensure the integrity of product appearance, we will choose cartons, Factory hot sale High-end durable Axial Option Parts Fine Small Scale 26.0mm Metal Copper Drive Shaft wooden pallets and wooden pallets according to customer needs.●Delivery time: Each reducer is manufactured and tested in accordance with strict and fixed procedures to ensure that the quality is correct before leaving the factory and delivery on time.●Transportation mode: We will choose the most suitable mode of transportation for our customers according to the weight and size of the goods. We can also choose the mode of transportation according to the needs of our customers.●Receiving and after-sales service: After receiving the goods, please check whether they are in good condition. We will provide customers with perfect after-sales service.
FAQQ1: Are you a trading company or a manufacturer ?A: We are a manufacturer in ZheJiang Province, China. Our company owns the ability of manufacturing, processing, designing and R&D. We welcome your visit.Q2: How we select models and specifications?A: According to the specific details of the demands from the part of enquiry, we will recommend the products’ models upon synthesizing the factors of field of products usage, power, torque arm and ratio…Q3: How is your price? Can you offer any discount?A: Our prices are always competitive. If the customer can place a large order, we surely will allow discount.Q4: How long should I wait for the feedback after I send the enquiry?A4: We will reply as soon as possible, 12 hours at most.Q5: What is your product warranty period?A: We have the certifications of ISO9001,CE, SGS.Q6: What industries are your gearboxes being used?A: Our gearboxes are widely applied to metallurgical equipment, mining equipment, automation equipment, food machinery, High quality DIN manufacturer custom cnc turned brass bushing packaging equipment, tobacco equipment and so on.

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The two shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China Good quality Sale price WPO worm gearbox wpo speed reducer wpo60 for 7.5kw motor  near me shop China Good quality Sale price WPO worm gearbox wpo speed reducer wpo60 for 7.5kw motor  near me shop

shaft clamp

As one of leading shaft clamp manufacturers, suppliers and exporters of mechanical products, We offer shaft clamp and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of shaft clamp

Recent Posts